Formulation of phase-field energies for microstructure in complex crystal structures

نویسندگان

  • Lun Yang
  • Kaushik Dayal
چکیده

The unusual properties of many multifunctional materials originate from a structural phase transformation and consequent martensitic microstructure. Phase-field models are typically used to predict the formation of microstructural patterns and subsequent evolution under applied loads. However, formulating a phase-field energy with the correct equilibrium crystal structures and that also respects the crystallographic symmetry is a formidable task in complex materials. This paper presents a simple method to construct such energy density functions for phase-field modeling. The method can handle complex equilibrium structures and crystallographic symmetry with ease. We demonstrate it on a shape memory alloy with 12 monoclinic variants. The unusual behavior of shape-memory alloys, ferroelectrics, and other multifunctional materials is driven by a structural phase transformation. Below the critical phase-transformation temperature, the crystal structure changes and this leads to multiple, symmetry-related variants. The different variants can form microstructural mixtures to satisfy applied boundary conditions. Changes in the applied loads can cause microstructural rearrangements rather than the lattice distortions that are characteristic of typical materials. This ability to rearrange microstructure leads to unusual and technologically important behavior as seen in shape-memory alloys, ferroelectrics, and other multifunctional materials [1, 2, 3, 4]. To enable design with multifunctional materials, it is important to be able to predict the microstructural patterns. Phase field models are widely used for this purpose [5, 6, 7, 8, 9]. They obtain microstructural patterns by minimizing the free energy E of a specimen Ω. In the case of shape-memory alloys, that are the focus of this paper, E consists of Winter, the surface energy of the interfaces between different variants, and Waniso, the anisotropy energy that penalizes deviation of the strain (x) from the crystallographically preferred states.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

First Principle Study of MC (M= Al, Ga, and In) at Equilibrium and under Negative Stress

The electronic and magnetic properties of the hypothetical compounds of MC (M=Al, Ga and In) are investigated by using first-principle calculations and pseudopotential plane wave self-consistent field method based on density functional theory. In order to find the most stable phase of MC (M=Al, Ga and In), we study them in zinc-blende (ZB), rocksalt (RS), wurtzite and NiAs crystal structures. W...

متن کامل

New Method for Preparation of Nano Alumina Powder Using Aluminum(III) Complexes by Combustion Synthesis Without Fuel

Alumina nanomaterials were synthesized via a solution combustion technique using tris-(acetylacetonato) aluminum(III) complex (1) and tris-(2-formylphenolate) aluminum(III) complex (2) at 600, and 1000 °C for 3h. The obtained data showed that the procedure without using fuel resulted in a better phase and morphology. To investigate the phase formation, powder X-ray diffraction technique was use...

متن کامل

Influence of reaction parameters on crystal phase growth and optical properties of ultrasonic assisted hydro- and solvothermal synthesized sub-micrometer-sized CdS spheres

Sub-micrometer-sized CdS spheres were synthesized by hydrothermal and solvothermal reactions using Cd(NO3)2.4H2O and CH4N2S raw materials at a constant stoichiometric 1 : 2, Cd : S molar ratio. Various conditions such as solvent type (water and/or ethanol), reaction time and temperature were examined for the synthesis of the targets. The sy...

متن کامل

Influence of reaction parameters on crystal phase growth and optical properties of ultrasonic assisted hydro- and solvothermal synthesized sub-micrometer-sized CdS spheres

Sub-micrometer-sized CdS spheres were synthesized by hydrothermal and solvothermal reactions using Cd(NO3)2.4H2O and CH4N2S raw materials at a constant stoichiometric 1 : 2, Cd : S molar ratio. Various conditions such as solvent type (water and/or ethanol), reaction time and temperature were examined for the synthesis of the targets. The sy...

متن کامل

COMPARISON OF MICROSTRUCTURE AND PHASE EVOLUTION OF YSZ NANOPARTICLES SYNTHESIZED BY CO-PRECIPITATION AND MOLTEN SALT METHODS

This study aimed to compare the phase changes and morphology of yttria-stabilized zirconium oxide powders (YSZ) synthesized by co-precipitation and molten salt methods. Ammonia precipitating agent was used for the synthesis of YSZ powder by co-precipitation method and a mixture of sodium carbonate and potassium carbonate salts was used as a molten salt in the molten salt method. Samples were ch...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010